图片 7

中美科学家合作发现调控细胞有丝分裂新机制,细胞分裂时

“膜仁消失现两体,赤道板上排整齐……”对不少人来说,中学时背下的各种有丝分裂口诀也许已是他们对细胞分裂过程的最后印象。不过,这项被写进教科书多年的细胞行为,仍有许多细节困扰着当今的生物学家们。

中科院上海生化与细胞所等 中美科学家合作发现调控细胞有丝分裂新机制

文章来源:北京科普之窗

大连理工大学生物医学工程学院刘波教授团队在细胞膜张力的可视化研究方面取得突破。团队借助荧光共振能量转移技术(fluorescence
resonance energy
transfer,FRET),构建能够特异性与细胞膜上的脂筏区域和非脂筏区域锚定的张力检测探针。该探针能够在活细胞内可视化观察剪切应力作用下细胞膜张力的动态变化过程,精度达到pN量级。该项研究成果于近日被Cell出版社旗下子刊iScience期刊接收并在线发表。

图片 1动物细胞有丝分裂的示意动画。图片来源:leavingbio.net

本报讯中国科学院上海生物化学与细胞生物学研究所研究员朱学良小组与美国华盛顿卡内基研究所合作,发现锌指蛋白BuGZ通过结合并稳定Bub3调控细胞有丝分裂过程中染色体的排列与分离。

揭开细胞有丝分裂关键秘密驱动蛋白为细胞微管生长提供动力

机械力对细胞的定向迁移和极性变化等有重要作用,但其极性的发生机制仍不清楚。刘波教授假设这种极性是外界应力在细胞内沿特定结构直接传递至特定位置,引起局部蛋白活化所致。细胞膜是应力传递的首要环节,其张力分布的不均匀性可能是细胞极性变化的根源。但由于缺乏合适的探针,这种假设尚未得到有效验证。传统的微管吮吸技术、光镊、磁镊等虽然能够测量细胞的表面张力,但是不能实时提供张力变化的信息,而且空间分辨率比较差。

其中一个被争论了许多年的问题,就是在细胞有丝分裂期间,染色体排列在赤道板上准备被分开拉向细胞两极时,动粒(也就是“着丝点”)受到的拉力有多大。这个问题的答案对弄清动粒的结构,乃至理解细胞如何分裂至关重要,多年来有关于此的估算也各式各样。“可那些结果在大小上相差数百倍甚至上千倍。”
马萨诸塞大学阿姆赫斯特分校的细胞生物学家托马斯·马雷斯卡(Thomas
Maresca)说,“但是现在,我认为我们最终得到了答案。”

1月24日,该成果在线发表于《发育细胞》上。

科技日报北京11月1日电据美国宾夕法尼亚州立大学消息,该校研究人员发现驱动蛋白——Kinesin-5会在细胞微管末端暂停,产生驱动力刺激微管生长。这些蛋白可能是细胞分裂、神经分支与生长的关键因素。这些发现有助于人们理解在细胞分裂中,驱动蛋白对微管动力学有何影响,以及它们是怎样正确分开遗传物质的。
驱动蛋白是马达蛋白中的一个家族,存在于多细胞生物体内,它们就像是细胞内的微型机车,沿只有25纳米粗细的微管运输着分子货物,供应其它细胞活动之需。人体内总共有45种不同的驱动蛋白。
宾州大学生物医学工程教授威廉姆•汉考克说,马达蛋白在细胞中执行着大量关键任务,他们正努力揭开它们在分子水平运作的秘密。
在实验中,研究人员跟踪观察了单个荧光标记的kinesin-5分子的运动,发现这些“马达”会在微管末端暂停,然后产生驱动力,驱动微管生长。他们把微管固定在显微镜片表面,加入自由微管蛋白亚体和改良的kinesin-5,结果发现在荧光纤维镜下,加入kinesin-5增加了微管蛋白的生长速度和时间。
研究人员指出,理解kinesin-5在微管蛋白生长中的作用,有助于研究细胞有丝分裂过程中,它们是如何固定和生长纺锤体的。纺锤体是保障染色体复制的支架,理解了支架是怎样形成的,对于理解细胞分裂非常重要,而这种支架形成机制也是抑制细胞分裂的潜在标靶。
汉考克说,癌细胞是细胞群中生长最快的,若想要终结癌细胞分裂,最需要的是打破并重组它们的微管网络。若能做到这一点,则有望带来新的癌症疗法。
相关论文发表在最近出版的《自然•通讯》上。(作者:常丽君文章来源:中国科技网-科技日报2015年11月02日

鉴于上述难题,团队对诺贝尔化学奖得主钱永健的研究作了进一步的拓展,将一段具有pN灵敏度的蛛丝蛋白嵌入两个荧光蛋白之间,构成能够与细胞膜锚定的FRET探针。利用该探针,发现在定向的剪切应力作用下,细胞膜张力呈现两端小、中间大的非均匀性分布,而且膜张力会随着细胞膜流动性的增加、微丝骨架的破坏而变大,但并不会出现上下游的极性差异。该研究结果首次实现了细胞膜张力的动态可视化观察,并证明了定向应力作用下细胞极性变化并非由细胞膜张力的非均匀分布所引起,而应由细胞膜下其他结构对力的非均匀传递直接导致。

图片 2细胞分裂过程。图片来源:tumblr.com

有丝分裂是细胞将遗传物质染色体分配到两个子细胞中的过程。有丝分裂异常会引起细胞病变甚至死亡,并在多细胞生物中导致遗传疾病或肿瘤发生。同时,有丝分裂过程受到复杂而精细的调控,以保证其既快速又准确。

该研究工作得到了国家自然科学基金(31670867,31670961)及中央高校基本科研业务费的资助,大连理工大学生物医学工程学院硕士研究生李旺为论文第一作者,刘波教授为该文的通讯作者。

根据发表在《自然·通讯》上的论文[1],马雷斯卡的团队利用两种不同的力感受器去测量果蝇细胞在有丝分裂过程中产生的拉力,他们得出结论:纺锤丝在动粒上施加的、朝向细胞两极的力足有数百皮牛(1pN=10^-12N)大小。

为了保证染色体的均等分离,染色体上的动粒需要与来自纺锤体两极的微管建立“双极连接”,即姐妹染色单体上的动粒分别结合来自一极的微管。只有当所有染色体都建立了双极连接并排列在赤道板上(即进入有丝分裂中期)后,姐妹染色单体的分离才会启动。

iScience是Cell
Press于2018年3月刚创刊的开源性期刊,iScience主要关注生命、物理及地球科学等领域最前沿的研究工作,刚推出便受到广泛关注。

图片 3简易版的果蝇动粒模型。红色为与动粒相连的纺锤丝(微管)。绿色、灰色及蓝色为构成动粒的蛋白质及蛋白复合体。马雷斯卡团队的拉力测量系统构建在CENP-C上。图片来源:参考文献[1]

通常认为动粒结合微管后Bub3、BubR1等纺锤体检查点蛋白质在动粒上的定位会明显下降甚至消失,细胞因此能“感知”动粒与微管的结合情况。

科学家们显然无法在动粒上拴一个弹簧测力计来完成这样的任务。在这个研究中,马雷斯卡和他的博士生叶安娜(Anna
Ye)以及斯图尔特·凯恩(Stuart
Cane)三人巧妙地采用了类似的思路——他们构建了两种不同的力感受器,上面带有不同的荧光基团。这些感受器在受到拉力时会发生构象变化,荧光强度因而受到改变。通过将这两种力感受器嵌入果蝇动粒的重要结构——着丝粒蛋白CENP-C中,研究者得以通过分析荧光的改变情况估算施加在每个CENP-C蛋白上的拉力。

在朱学良指导下,博士研究生姜昊和何骁男利用超高分辨率荧光显微术等技术证明,与微管侧面结合的动粒实际上比未结合微管或已稳定结合微管的动粒含有更多的检查点蛋白质。而且,研究人员还在利用小鼠胚胎干细胞所进行的筛选中发现一个能够影响有丝分裂的锌指蛋白BuGZ。

图片 4图片 5第一种力感受器基于荧光能量共振转移(FRET)效应设计。图a为原理示意:当青色荧光蛋白与黄色荧光蛋白的距离较远时,青色荧光蛋白吸收激发光的能量后发出青色荧光;但当青色荧光蛋白与黄色荧光蛋白距离较近(通常小于10nm)时,黄色荧光基团通过FRET效应获得能量,发出黄色荧光。图b为感受器示意图:青色荧光蛋白(mTurquoise2)和黄色荧光蛋白(mVenus)之间用弹性肽链相连,在所受拉力较小时,两个荧光蛋白距离较近,FRET效应较强;而受到较大拉力时,弹性肽链被拉长,两个荧光蛋白之间的距离变大,FRET效应减弱。通过比较细胞分裂间期和细胞分裂中期的结果,研究者最终得出平均每一个CENP-C蛋白受到约1.2-1.4pN的拉力。图片来源:a:semrock.com;b:参考文献[1]

《中国科学报》 (2014-01-28 第4版 综合)

图片 6第二种力感受器则基于踝蛋白(图中部红、白色结构)和黏着斑蛋白(黄、红色结构)设计。这两种蛋白能够结合在一起。踝蛋白受到的拉力作用越大,它与黏着斑蛋白结合的结构域(红色)就暴露得更多,因此能够结更多黏着斑蛋白。研究者在CENP-C蛋白中间插入踝蛋白,而在黏着斑蛋白上加上绿色荧光蛋白。通过分析CENP-C蛋白受力时结合在踝蛋白上的荧光,研究者最终发现细胞分裂中期与细胞不分裂时相比,结合在踝蛋白上的黏着斑蛋白相差了约1.3个,根据此前研究数据换算出平均每一个CENP-C蛋白受到的拉力约2pN。图片来源:参考文献[1]

在三年多的实验里,该课题组获得了超过3200个数据点。两套力感受器系统估算得的拉力数据比较一致,研究者认为在果蝇细胞有丝分裂中期,每个CENP-C蛋白受力在1-2pN之间。其他研究结果提示,平均而言,每个动粒与11条微管连接,每条微管与12到31个CENP-C蛋白结合,因此,在果蝇细胞分裂过程中将拖拽动粒的拉力范围在135-677pN之间。考虑到这一受力结构的尺度,这样的拉力已经非常高。“在细胞中有不同的分子马达,有一些像短跑运动员,但是我们测得的这个更像是推土机——它们能够在一个缓慢而稳定的速率下制造比较大的力。”马雷斯卡说。

研究者推断,这样强大的压力主要是微管的动力过程过程产生的。他表示,分子马达在微管上移动,就像在高速公路上行驶一样。“这种拉力非常强,但并不是很快,我们认为是‘道路’而非‘汽车’产生了大部分存在的拉力。”他希望这些研究结果能帮助人们解决由来已久的拉力问题,并由此进一步加深对细胞分裂过程的理解。

图片 7未解之谜还多着呢!图片来源:tumblr.com

(编辑:Calo)

参考资料:

  1. Anna, A. Ye, Stuart Cane, and Thomas J. Maresca. “Chromosome
    biorientation produces hundreds of piconewtons at a metazoan
    kinetochore.” Nature Communications 7
    (2016): 13221.
  2. Strong, Steady Forces at Work During Cell Division. umass.edu

文章题图:Beata Edyta Mierzwa, beatascienceart.com